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ABSTRACT 

This report describes a planning model for the continental U. S. air traffic system. 
The basic approach employs the dual objectives of monitoring collision risks while 
minimizing transportation costs. Due to the model's special structure- a network graph 
-- extremely efficient nonlinear algorithms are available for solving problems in this 
class. Test problems from the Indianapolis control sector are solved with a CRAY X- 
h4PI24 supercomputer. Despite these results, further work is needed to develop a practi- 
cal system, given current hardwadsoftware technology. Suggestions are made for com- 
bining advances in artificial intelligence and mathematical modeling. 

1. Introduction 

Computational and information technologies have gotten to the stage where large-scale operational 

planning models are rapidly gaining acceptance. Some common examples are the following applications. 

Trucking companies are beginning to employ stochastic networks for scheduling and pricing their "less 

than truckload" shipments in response to deregulation. Airlines routinely assign pilWcrews to routes so as 

to minimize costs. Railroads manage their freight-cars by means of elaborate information-decision systems. 

In each of these cases, large amounts of data are assembled in the context of a mathematical, real time 

planning model. Decisions are rendered in conjunction with this model, using the expert judgment of the 

decision-maker [DM]. It is important to recognize that the process takes advantage of the best attributes of 

both the human and the computer. Each is essential. 

One of the largest operational planning problems involves the real-time conml of the United States 

air traffic system. On average, in 1984 over 17,000 flights per day traveled the high level (above 29,000 
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feet) jet routes. It is anticipated that traffic will increase by 40% over the next 5 years. In response to this 

build up, the U. S. Federal Aviation Administration (FAA) has put together the National Airspace System 

Plan WASP]’. Its goal is to coordinate the design and implementation of appropriate new 

hardwarehoftware for the air traffic system. The FAA will spend over $1 1 billion in conjunction with the 

NASP. 

While there a~ several possible modes of operations for integrated risk/cost planning, this report will 

concentrate on an operational model [OP]. This particular model has interest for several reasons. First, the 

problem is exmmely large, even by today’s supercomputer standards, due to the complexity of the feasible 

routes and possible time delays. It is projected that an 8-period (e.g., eight 1-hour time steps) regional 

model will consist of approximately 15,000 equations and 270,000 nonlinear variables. To be practical for 

operational planning, a problem of this magnitude must be solved in less than 30 minutes of elapsed time. 

Second, there are a number of conflicting objectives to be considered a) systemwide risk, b) aggre- 

gate transportation costs, c) individual carrier costs and delays, and so on. Tradeoffs in these criteria will 

undoubtedly require a systematic mthod for assessing the implicit marginal rates of substitution (MRS) 

between the conflicting criteria. Also note that M R S ’ s  will depend upon the level of satisfaction for each 

particular criterion affected. 

Finally, stochastic elements must be considered along with combinatorial aspects. The weather and 

other random affects will often cause the forecasted time of flight to be inaccurate. Since the model con- 

sists of multiple time periods, a multi-scenario planning procedure would provide an ideal framework; 

however, the problem’s enormous size precludes th is  approach in the foreseeable future. Another strategy 

is to operate under a rolling horizon in which decisions beyond the current period are only tentative and are 

updated as time unfolds. This approach has the ability to adapt as conditions warrant -- a form of stochastic 

Programming. 

2. Basic Planning Model 

Solving large scale problems requires taking advantage of the problem’s special structure. This stra- 

tegy has been particularly successful in the case of network optimization algorithms. See references 2*9* lo 
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for examples. Today, a linear network in excess of 20,000 nodes (equations) and 2,OOO,OOO arcs (variables) 

can be solved routinely. 

The initial operational planning model is defined below as a bicriteria problem: 

[OP] Minimize wR(F) + al.T(F) 

Subject to : 

C, c,rfSt*xj,SL8, fordl g i G  , S E T  
reR, teT, f EF . 

1 flight f takes route r ,  departs at time t 

T (E)  : transportation costs 

n(F): system risks 

flights : f E F 

time periods : t E T = { 1,2,3, ... ,p} 

eligible departing times for flight f : {Tf } 

routes:rE R 

eligible routes for Q h t  f, departing at time t : {R)} 

cost for flight f, departing at time t, taking route r : c;, 

geographical regions : g E G 

limit on number of airplanes occupying region g, during time period s : LgJ 

incidence matrix for flight f, departing at time t, taking route r, in region g at time s : I'f;,, 

The two parameters in the objective function -- a, and a, -- represent goal programming weights for 

the system risk R<x) and the transportation cost T( Z). The transportation cost function includes both flight 

travel cost and delay costs, either on the ground or in the air. Typically, the risk function Q(Z) will be non- 

linear, nonseparable and sparse. 
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The planning model has been defined in a very general setting, using arbitrary geographical regions g 

E G and multiple time periods t E T. In fact the regions may overlap or depict geography as detailed as 

individual runways. Some examples of regions are the following : departing airports, en-route control sec- 

tors and destination airports. A special case of [OPI is the "flow control" ~ r o b l e m ~ * ~ .  

Flights, f E F , are also defined in a very general manner. They may represent the usual { airport a to 

airport b } link, or they may represent { point c to airport b } or any general path across the United States. 

Here, point c depicts an intermediate air-space location between airports a and b. 

The constraints (3) ensure that every flight is scheduled to a single route. Constraints (1) are based on 

airspace and airport limitations; these are defined as limits on the amount of traffic which can be safely 

monitored in various regions ( or sectors). These rules are dependent, of course, on the type of traffic which 

will be using the facilities, anticipated weather and other parameters. 

Mention should be made of the incidence matrix r. This array identifies, for each x-variable, the time 

periods (s) and the regions (g) which will be traversed by flight xj,.  Remember that x j r  represent flight f 

E F,depmuretc TI androuter€ R;. 

It should be noted that model [OP] can be interpreted in several ways: 

(1) transhipment network with multicommodity side constraints and integer variables. 

(2) 

(3) general integer program (IP). 

Because of the model's ultra-large size, it is imperative to develop a solution algorithm which is extremely 

efficient. Not only must the model be solved in a real-time environment but also it must take into account 

possible uncertainties, for instance in travel time. 

integer set partitioning problem with capacity constraints, or 

In a previous report l1 we have shown that a network approach to solving model [OP] is feasible. 

Section 5 reviews the nonlinear network algorithm for solving [OP] and reports computational results. Fig- 

ure 1 depicts a small sample problem consisting of 5 airports and 10 decision variables. In this example, 

risk is handled by means of a congestion function which limits the number of flights in any well defined 

airspace, over a specified time period. If congestion is predicted, the model considers two courses of 
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action: either flights are delayed in time, or they are assigned to a new geographical path. The model 

minimizes total transportation costs subject to congestion restrictions (at the airports and in the air). 

An important feature is the model's ability to provide "optimal" solutions. Flight delays, especially 

those occurring in the air, are expensive due to the costs of fuel, salaries for the crew, ill-will invoked from 

the passengers, and so on. A 1% gain in operating efficiency translates into multi-million dollar savings in 

fuel costs alone. Non optimizing heuristic algorithms are difficult to justify when an optimization frame- 

work is available and when the opportunity costs are so high. In conjunction with cost minimizing, the 

[OP] model will provide a safer environment due to improved flight management. Peak congested regions 

will be reduced, since constraints (2) limit the maximum number of flights in a given time-airspace. 

Stresses on air traffic controllers will be reduced, and the workloads will be distributed more evenly. 

3. ModelUses 

The primary application of the proposed planning model is to identify any anticipated instances of 

congestion and to propose alternative actions. Note that the model considers the limitations of the airports 

as well as other sources of possible congestions in handling traffic patterns. As such, the flow-control 

management problem depicts a special case of model OP. "Flow control" delays aircraft on the ground 

when congestion is anticipated at the destination a i r p ~ r t ~ ~ ~ .  (Currently, the nine busiest airports are moni- 

tored for congestion as part of this delay system.) 

Figure 2 illustrates a highly simplified example. Here flights 101 and 102 are scheduled to traverse 

sector xyz during period t. However, flight 103 and 104 have also requested the same sector during the 

same time period. Two types of decisions can be made in order to keep the total number of flights below 

the pre-specified maximum --in this case W e :  either flights must be delayed or a different path must be 

taken by at least one of the airplanes. Whatever is chosen by the model must also be assessed by the air 

traffic controller. Yet the decision will affect other neighboring flights, in a cascading manner, and these 

must be considered by the model. 

As an operational tool, model [OP] provides an ideal framework for collecting and monitoring timely 

flight information on a national basis. At present, it it extremely difficult to evaluate the network aspects of 
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Figure 1: A Sample Air-traffic Control Model 
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F l i g h t  101 

F l i g h t  102 P 
Fl igh t  103 

Figure 2: A Simple Example of Air-traffic Control Model 

risks, except through the mechanism of counting actual collisions or "close encounters", or by counting the 

number of controler interventions required to avoid such encounters. The network database could be used 

within the context of a comprehensive risk evaluation system. The result would be a more accurate evalua- 

tor of network risk and would compliment the more traditional approaches ( Odoni and Endoh12 ) which 

are based on the analysis of individual micmevents. As the forecasted increases in Gaffic occur during the 

next few years, new pressures will be placed on the (systemwide) command-and-control aspect of U.S. air 

traffic. 

One of the current difficulties encountered in the flowcontrol procedures mentioned previously is 

perceived inequality among individual air-carriers. Canier xyz believes that they are meiving an unfair 

percentage of the delays. And perhaps, the airline is correct in their perception. Not only would model OP 

measure the degree (and kind) of delays for each air-carrier but also the model could be easily expanded to 

Fl igh t  104 
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include equity considerations, through a modified objective function or additional linear constraints. 

Restrictions would take the following form: 

I: 
r€R;re T,faF, 

I: d;;x;,-(AVE)-&;+E;=O, forall carriers C E C  

where 

(AVE) is the mean delay for the air-traffic system, calibrated for the carriers. 

d jJ  :,total ground (air) delay for flight f, departing time t, route r. 

{ F c }  : all fights for carrier c 

E:, E; : positive and negative derivations for carrier c 

Another method for handling inequitable delays is to invoke a siG payment FA, whereby under- 

delayed carriers compensate over-delayed carriers. While in theory, a loser compensation plan is more 

efficient than the method in which extra constraints are imposed, there are potential problems. First, the 

system is subject to abuse. Second, the system requires a bureaucracy for monitoring and maintaining 

itself. Third, antitrust laws must be dealt with. Further research is needed to resolve these policy issues. 

As experience is gained with the basic OP model features and options can be added. For example, 

many people have argued that a deregulated air traffic system, in which airplanes are allowed to take any 

path, would be an improvement over the fixed route st~cture which is largely in place today. Model OP 

could be easily expanded to include variable routes as long as the ensuring model size is within the range 

of practical solution. The design of efficient solution algorithms is essential in this extension. 

The interface between the human decision maker and a model such as OP will require extensive 

research so that the coordinated action is virtually foolproof. Information must be presented in a form 

which is suitable (probably graphically) fur the user; he must be able to respond in a convenient and unam- 

biguous manner. This will require novel ideas from artificial intelligence and operarims research. 

4. Tactical Considerations 

Selecting an acceptable level of congestion for a particular airspace ( i. e. the Lgc and a, 

coefficients) is a complicated task. The decision has several dimensions. On the aggregate level, congestion 

can be traced out against total travel costs as shown in figure 3 as an efficient frontier. Or the congestion 
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Figure 3: Efficient Frontier for RisWCost Tradeoff 

criteria could be measured on an average basis, rather than a worst case basis. Regardless of these issues, 

the parameters will be influenced by the details of geometry and the types of aircraft which fly through. 

The OP model provides enough generality for handling these factors in a systematic fashion. 

Other tactical decisions regarding the air system can be analyzed. For instance, the minimum spac- 

ing required between aircraft will affect the number and type of decision variables. Given a proposed 

modification, the OP model can be run before and after; differences in performance provide an estimate of 

the impact of the proposed alteration. Figure 4 shows a hypothetical efficient frontier for two cases. The 

two criteria in this situation are maximum congestion and total costs, as indicated along the two axes. This 

analysis provides a systematic framework for deciding if the proposed modification is sensible. However, 

one must be careful. Again turning to Figure 4, we see that the original system is more desirable when the 

maximum level of congestion lies below the threshold value cg. Conversely, the new system appears more 
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desirable when the threshold value exceeds co. The decision hinges on the acceptable level of maximum 

congestion. 

R I S K  

Modified system - 
Original system 

- 
COST 

Figve 4: Comparing two opentional Scenarios 

5. Algorithmic Issues 

This section takes up issues which are pertinent to the solution of ultra-large network problems. To 

accomplish this task will require the interplay between two diverse disciplines. On the one hand specialized 

algorithms are required that will capitalize on the special structure of the network models. On a different 

front we should consider accessing a supercomputer, that has enough computational power and memory 

size to handle the ultra large problems arising from the OP model. Today, all supercomputer designs 

employ some form of multi-processing -- either vector or distributed. Hence, an important effort will be to 

adapt the network algorithms for these machines. Research is already under way for streamlining the net- 

work specialized algorithms for the environment of vector computers, see for example Zenios and 
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Mulvey14. In addition developments are taking place in designing numerical algorithms that can be pro- 

cessed efficiently on massively distributed systems; see Bertsekas and El Baz3 or Zenios and Mulvey13. 

We describe in this section a specialized algorithm for solving problems of the form [OP]. Through compu- 

tational testing the efficiency of this algorithm on a wide range of computer systems will be established. 

5.1. Truncated Newton Algorithm 

In a manner similar to most nonlinear programming procedures, each truncated Newton (TN) itera- 

tion consists of two stages : (1) a search direction routine, and (2) a step length routine. Table 1 depicts the 

overall flow. The search direction must fulfill certain essential features so that the overall algorithm will 

converge and so that performance efficiencies are attained. First, the direction must both maintain feasibil- 

ity and point downhill (in a minimization context). Defining the search direction as $ and given a feasible 

point 2 at the k" iteration, the usual Newton method for calculating Fk would solve the following qua- 

dratic programming problem : 

[QP] Minimize - 1 (p")' C(x") j jk  + g ( x  - k f J  ) p 
2 

Subject to ; 

L $ = O  

p ; 2 0  if x;=rj  

pic50 if x f = u j  

where . - 
g ( t >  gradient at t 
G(2) Hessian at f 

By restricting our attention to a special projected matrix Z whose columns form a basis for the null space 

of A, i.e. A *Z=O, the problem [QPJ can be solved using the following two formulae : 

(Z' G Z).F,!=Z' 2 
p'lt = Z ' Z  

where 

15.11 

G semi-positive approximation to the Hessian at point 3 
, 
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t 

'I 

. .OlV. tu 4; J 
I 

I 
Table 1 : The Truncated Newton Algorithm 
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2 gradient of objective function at point 2 

and where the decision variables have been partitioned into three sets : 

- 
x = b b  I x s  t 
A = [ B  I S  IN1 

g ( F ) = k b  188 1 gnl 

P " = [ P b  Ip8 IP.1 

The benefits of the Newton direction p" are greatest in the neighb-rhood of a solution; however it is 

expensive to calculate the solution of equation [SA]. In response, we adjust in a dynamic fashion the 

degree of accuracy of solving [QP]. A forcing sequence {qk}+ 0 is employed in this regard. Accuracy is 

defined according to the relative residual in equation [5.1], ' I r k ' '  , in which 
I IZ 'Fk I  I 

r k  E (2' G 2 ) .  F:+ 2' 2 and 11.11 is a vector norm in R". IIhe minor iteration (see Table 1) continues 

only until the required accuracy is attained. Thus, q k  defines the termination criteria for the 

minor iterations. 

1 I r k  I I 
I 12' Fk I I 

When the algorithm is far from the solution the reduced gradient -- I IZ' F' I I -- is large and little 

work is required to locate a direction satisfying the acceptance criteria Only the basic and super basic vari- 

ables are optimized. If one of these variables hits a bound, the constraining variable is transferred into the 

set of nonbasics [x,,]. As I IZ' 2 I I is reduced the acceptance criteria becomes more restrictive and the 

current solution to the direction finding problem lies closer to the Newton direction. 

At this pint ,  the nonbasic variables must be tested for optimality. First order estimates for the 

Lagrange multipliers are computed as follows : 

In this environment non-basic variables that reduce the objective function when moving away from their 

bounds (i.e., if & c 0 and x l =  u i ,  or if & > 0 and x i  = li) along with free non-basic variables (i.e., 

li .c x i  .c u i )  are called eligible. Eligible variables are transferred to the superbasic set [x,] in conjunction 

. .  

with a maximal basis', and the TN algorithm continues the next major iteration with the new partition. 
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A sizable pomon of the algorithm's execution time involves computing the search direction F:. 

While the Truncated-Newton method can use any iterative method for solving equation [5.1], we have 

chosen the linear conjugate-gradient [CGI method. Although the reduced Hessian manix Z'GZ is typically 

dense, the product required by [CGI, (Z'CZ) V , is easily computable due to the sparsity of the large-scale 

components. The success of the conjugate-gradient method depends upon locating a "good" search direc- 

tion in a small number of iterations. Thus, preconditioning the reduced Hessian by the matrix P is important 

so as to reduce the number of CG iterations. Whereas the usual initial element of the CG sequence is F', 
the vector P .z  becomes an initial element when preconditioning, where P is a positive-definite matrix. 

See 2 for further details. 

6. Data Requirements and the Indianapolis Control Sector 

One of the most critical aspects in modeling real world systems is the ability to collect the required 

data in a timely fashion. In the case of the [OP] models, data may be classified in two categories : static and 

dynamic. By static we refer to data that do not change over a long period of rime (e.g. airport locations) and 

by dynamic we mean data that change with time (e.g. flights scheduled), or with technological innovation 

(e.g. aircraft fuel burn rates, navigation systems, flight management procedures). For the model to be use- 

ful, the input data must readily available. A key component of the comprehensive National Airspace Sys- 

tem Plan is a centralized data-base of aircrafts scheduled for, or actually flying the high altitude jet routes8. 

This data-base can serve on a real-time basis for updating the data required for [OW. 

For the prototype model developed the following categories of data were required : 

(I) Airportsinformation 

(II) Flights information 

(III) Fuel Burn data 

Table 3 provides more details. Some data, like the airports coordinates, were available through sources 

used in the past by FAA, while other data had to be collected for the network model. 
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The following sources were employed: 
(I) 
(11) 

International Official Airlines Guide (IOAG) tape, providing information about the airports. 
Flight Progress Strip data collected by the Control Center, providing flights information . 

(111) Fuel Bum Model developed by the FAA, providing data about fuel burn rates for different types of 

aircrafts. 

Airports Information 
1.AirportIDcode 
2. Geographical coordinates 

* Flight Information 
1. Flight ID 
2. Origin airport 
3. Destination airport 
4. Cruise altitude on entering target sector 
5. Cruise altitude on exit from the target sector 
6. Time flight enters the target sector 
7. Time flight exits from the target sector 
8. Flight Hemi code defining legitimate cruise altitudes 

1. Aircraft type 
2. Fuel burn rate per hour for every legitimate cruise altitude 
3. Fuel b u m  rate per nautical mile for every legitimate cruise altitude 

Table 3 : Model data requirements 

A network model was built for the airspace controlled by a sector of the Indianapolis Center. The 

purpose of the model is to serve as a prototype to illustrate the use of the optimization algorithms described 

earlier as well as the feasibility of the proposed model. Data were collected for a high traffic period on 

January 9, 1985, in which a total of 185 aircrafts crossed the sector over a 6 hour period. The duration of 

flight through the sector ranged from 4 to 23 minutes. Five distinct cruise altitudes above 29000 feet 

(FL2900) were selected by the planes. The following provisions were made in the model : 

(I) Allow for delays at the origin airport, up to three 10-minute intervals and similar delays at the desti- 

nation airports. ?his time grid can be made finer by considering a larger number of progressively 

smaller delay intervals (e.g. six 5-minute intervals). The added accuracy will be balanced by the 

larger network that has to be solved. 
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(11) Allow for every plane to follow one or two alternative cruise altitudes besides the one currently fol- 

lowed. Choice was restricted to the cruise altitudes one level above and one level below the primary 

altitude. Again, this restriction can be relaxed at the expense of generating larger network models -- 

the aircrafts could be instructed to follow any one of the four or five legitimate cruise altitudes, 

specified for the particular fight. 

The model includes the dual objective of assessing risk and cost, as proposed in an earlier section. 

For more details on modeling this particular control sector refer to the paper by Mulvey and Zenios". The 

developed model was used as a prototype on which the developed algorithmic tools were tested. The avai- 

lability of realistic data also assists in validating the proposed modeling framework. By varying the relative 

weights on the transportation and risk functions in a systematic way the riskkost efficient frontier was 

traced (Figure 3). Again, the efficient frontier is not meant to serve as a direct way of comparing risk with 

cost. Instead it guides one in evaluating alternative modes of operation of the air-traffic control system, as 

generated by the model, or with currently followed procedures. The major advantage of this methodology 

is that it generates a sequence of almatives that are efficient; i.e. both risk and cost measures cannot be 

improved simultaneously. This is easier to understand if we notice the location of point A in Figure 3 - this 

point was obtained by solving the optimization problem inexactly. From point A we may move to a series 

of alternative solutions for which the system is better off, both with respect transportation cost and risk. 

To study the effect of airplane congestion, we developed a histogram of all planes flying at a particu- 

lar altitude, during the ten time intervals of interest. Figure 5 summarizes the results for three particular 

altitudes, before and after the optimization model was used. Note that, as expected, planes were diverted 

from a highly congested altitude (35000 ft) to less congested routes (31000 fi and 39000 ft). This result was 

obtained with relative weights 030.5 on both risk and transportation costs. 

I 
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Problem 

PTN150 

PTN660 

SMBANK 

BIGBANK 

GROUPlac 

GROUPlad 

MARK3 

Average 

1 1  NLPNETC Solution times (sec) 

IBM 3081 

1.98 

22.85 

2.64 

376.74 

218.46 

1320.82 

24.87 

VAX 1 ln5O (Unix) 

23.86 

297.93 

21.50 

9100.00 

1652.00 

10227.00 

204.43 

3075.25 (184) 
281*19 (17) I 

Table 4 : Testing NLPNETG on different computer systems 

The preceeding analyis for the Indianapolis sector was carried out on a VAX 111750 minicomputer. 

The CPU time required to analyze the sector under different scenarios for risk and cost varied between 18 

and 1200 sec. The VAX is a small computer by todays standards. To introduce additional elements in our 

model, and expand the analysis to cover the whole U.S. air-space will require access to a supercomputer. 

To demonstrate the ability of the network optimization algorithms to solve ultra-large problems in a matter 

of seconds refer to Table 4. We observe from this table that problems that take hours of CPU time on a 

VAX can be solved in less than a minute on a CRAY X-W/24 vector supercomputer. This level of 

efficiency however can be achieved only if care is taken to streamline the software system for the vector 

environment of the CRAY. Refer to the paper by Zenios and Mulvey14 for additional details. 

7. Future Research 

The network planning model OP holds promise for assisting air traffic controllers when the NASP 

becomes operational. In the meantime, research should be carried out on several fronts. 

There are various OP modeling parameters which must be estimated, including the acceptable level 

of congestion in the sectors and the costs of delays. In addition, the airspace regions (R) and time periods 
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Figure 5 : Aircnft Congestion Before and Afta Optimization 

(T) must be defined so that any boundary problems-- airplanes passing between regions- are minimized 

and so that a practical-size system results. At the same time, the model must depict the real world to an 

acceptable level. Flight paths must be determined, including paths which are sparsely traveled, for each 

airport pair and aircraft type. 

Nonlinear algorithms must be further studied; as new advances are made, they must be incorporated 

so that realistic-size examples will be solved. Remember that the OP model will be applied in a real-time 
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environment. At present, two promising ideas are exact penalty methods and successive quadratic pro- 

gramming5. These algorithms will need to be further specialized for networks and for the computer archi- 

tecture they are intended to run on. In conjuction, improved data storage schemes need to be discovered, 

schemes which are applicable to multi-processors. 

The interface between the model and the human needs to be studied. Most large scale mathematical 

modeling systems do not include an extensive graphical display capability. This research, combining ideas 

from artificial intelligence and operations research, will become essential as the model and data become 

more complex. 

We have assumed that data collection will be taken into account as part of the NASP. Much of the 

current air traffic system is automated, as witnessed by the automatic data collection efforts in the flow con- 

trol project Yet it is not unreasonable to expect that incompatibility and incompleteness of data will 

encountered. Any attempts to reduce this potential implementation problem will be helpful. It should be 

remembered that thousands of data items must be processed in a very short time. 
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